huangyuanchen g, zhongyan f ei, zhaoyehe, zhu weihen g. jointblindunmixin gands p arsere p resentationforanomal y detectioninh yp ers p ectralima g e[J]. Geomatics and Information Science of Wuhan University, 2015, 40(9): 1144-1150. DOI: 10.13203/j .whu g is20140575
Citation: huangyuanchen g, zhongyan f ei, zhaoyehe, zhu weihen g. jointblindunmixin gands p arsere p resentationforanomal y detectioninh yp ers p ectralima g e[J]. Geomatics and Information Science of Wuhan University, 2015, 40(9): 1144-1150. DOI: 10.13203/j .whu g is20140575

jointblindunmixin gands p arsere p resentationforanomal y detectioninh yp ers p ectralima g e

  • anomal ytar g etdetectionisanimp ortantissueinh yp ers p ectralremotesensin g,however,howtomodeltheback g roundisamostdifficultp roblem.thetraditionalrxal g orithmisrestrictedb ynon-g aussiandistributionoftheback g round.theob j ectiveofourworkistodevelo panewrobustanomal ydetectional g orithm.thisnewal g orithmwasabletofindsub-p ixeltar g ets;wealsop resentanewback g roundre p resentationmodel.theback g roundwasmodeledb yadictionar ycomp osedofrel-ativel yp ureback g roundendmemberbundlesthatwereconstructedb yablindunmixin gal g orithm.ever yp ixel intheh yp ers p ectral ima g ewasmodeledb ys p arsere g ressionusin gthedictionar y.there-constructionerrorwasusedasanomal yfeature;thosep ixelsthathavelar g ere g ressionreconstructionerrorsarethep otentialanomal ytar g ets.finall y,adualwindowbasednearestnei g hboranal y siswasusedtoenhancetheanomal ylikefeatures.thisal g orithmj oinedg lobalandlocal informationtog uar-anteethereliabilit y.ascomp aredtotheclassicalrxal g orithms,thep ro p osedal g orithmp erformedver ywellwithsimulateddata,inwhichthesub-p ixel tar g etwasconstructedb ytar g etandback g roundsi g nalswithdifferentmixedfractionandp ollutedb ynoise.tworealdataex p erimentsalsoconfirmedtheeffectiveness.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return